Robust Parameter Estimation in Computer Vision

نویسنده

  • Charles V. Stewart
چکیده

Estimation techniques in computer vision applications must estimate accurate model parameters despite small-scale noise in the data, occasional large-scale measurement errors (outliers), and measurements from multiple populations in the same data set. Increasingly, robust estimation techniques, some borrowed from the statistics literature and others described in the computer vision literature, have been used in solving these parameter estimation problems. Ideally, these techniques should effectively ignore the outliers and measurements from other populations, treating them as outliers, when estimating the parameters of a single population. Two frequently used techniques are least-median of squares (LMS) [P. J. Rousseeuw, J. Amer. Statist. Assoc., 79 (1984), pp. 871–880] and M-estimators [Robust Statistics: The Approach Based on Influence Functions, F. R. Hampel et al., JohnWiley, 1986; Robust Statistics, P. J. Huber, JohnWiley, 1981]. LMS handles large fractions of outliers, up to the theoretical limit of 50% for estimators invariant to affine changes to the data, but has low statistical efficiency. M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. While robust estimators have been used in a variety of computer vision applications, three are considered here. In analysis of range images—images containing depth or X, Y , Z measurements at each pixel instead of intensity measurements—robust estimators have been used successfully to estimate surface model parameters in small image regions. In stereo and motion analysis, they have been used to estimate parameters of what is called the “fundamental matrix,” which characterizes the relative imaging geometry of two cameras imaging the same scene. Recently, robust estimators have been applied to estimating a quadratic image-to-image transformation model necessary to create a composite, “mosaic image” from a series of images of the human retina. In each case, a straightforward application of standard robust estimators is insufficient, and carefully developed extensions are used to solve the problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Resampling Method for Computer Vision

A resampling procedure based on Efron’s bootstrap method is proposed for the robust estimation of parameters from redundant data. The procedure handles a substantial fraction of outliers, has linear complexity even for superlinear estimation problems, can be applied to any parameter estimation algorithm without modification, and is easily parallelized. The problem of estimating camera motion fr...

متن کامل

A Robust Nonparametric Estimation Framework for Implicit Image Models

Robust model fitting is important for computer vision tasks due to the occurrence of multiple model instances, and, unknown nature of noise. The linear errors-in-variables (EIV) model is frequently used in computer vision for model fitting tasks. This paper presents a novel formalism to solve the problem of robust model fitting using the linear EIV framework. We use Parzen windows to estimate t...

متن کامل

Robust estimation of shape parameters

We investigate the use of Robust Estimation in an application requiring the accurate location of the centres of circular objects in an image. A common approach used throughout computer vision for extracting shape information from a data set is to fit a feature model using the Least Squares method. The well known sensitivity of this method to outliers is traditionally accommodated by outlier rej...

متن کامل

Parameter estimation techniques: a tutorial with application to conic fitting

Almost all problems in computer vision are related in one form or an other to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter es timation. These include linear least-squares (pseudo-inverse and eigen analysis); orthogonal least-squares; gradient-weighted least-squares; bias-corrected renormal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1999